Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.630
Filtrar
1.
ASN Neuro ; 15: 17590914231191016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37499170

RESUMO

SUMMARY STATEMENT: Dexmedetomidine is an important ICU sedative. The mechanism of dexmedetomidine is not fully understood. Activating NA(-) and NA(+) neurons in the VLPO by dexmedetomidine using polysomnography and electrophysiological recording, this may explain the unique sedative properties with rapid arousal.


Assuntos
Anestésicos , Dexmedetomidina , Camundongos , Masculino , Animais , Hipnóticos e Sedativos/farmacologia , Dexmedetomidina/farmacologia , Área Pré-Óptica/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Anestésicos/farmacologia , Neurônios , Receptores Adrenérgicos , Sono/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37061271

RESUMO

Brimonidine is a highly selective 2-adrenoceptor agonist that lowers intraocular pressure (IOP) by decreasing aqueous humor production and increasing aqueous humor outflow via the uveoscleral route. Brimonidine is used to treat glaucoma and other eye conditions. Brimonidine is a topical medication that is used mainly to treat open-angle glaucoma and ocular hypertension in the eyelids. The purpose of this chapter is to provide a comprehensive discussion of Brimonidine's nomenclature, physiochemical properties, preparation methods, identification procedures, and numerous qualitative and quantitative analytical techniques, as well as its ADME profiles and pharmacological effects. In addition, the chapter contains numerous approaches for separating brimonidine from other medications in combination formulations utilizing chromatographic techniques and other spectroscopic approaches.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Tartarato de Brimonidina/farmacologia , Tartarato de Brimonidina/uso terapêutico , Glaucoma de Ângulo Aberto/tratamento farmacológico , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas alfa-Adrenérgicos/uso terapêutico , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Soluções Oftálmicas/uso terapêutico , Glaucoma/tratamento farmacológico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico
3.
Methods Mol Biol ; 2550: 95-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180681

RESUMO

Pineal gland secretes the hormone melatonin at night with a circadian rhythm. The synthesis and secretion of melatonin are stimulated at night by norepinephrine released by sympathetic postganglionic neurons projecting from the superior cervical ganglia. Norepinephrine simultaneously activates α- and ß-adrenoceptors, triggering melatonin synthesis.To study the regulation of melatonin production and secretion, it is very convenient to use an ex vivo preparation. Thus, it is possible to keep intact pineal glands in culture and to study the actions of agonists, antagonists, modulators, toxic agents, etc., in melatonin synthesis. Artificial melatonin synthesis stimulation in vitro is usually achieved by using a ß-adrenergic agonist alone or in association with an α-adrenergic agonist. In this chapter, the methodology of cultured pineal glands will be described. Several papers were published by our group using this methodology, approaching the role played in melatonin synthesis control by angiotensin II and IV, insulin, glutamate, voltage-gated calcium channels, anhydroecgonine methyl ester (AEME, crack-cocaine product), monosodium glutamate (MSG), signaling pathways like NFkB, pathophysiological conditions like diabetes, etc.


Assuntos
Cocaína , Insulinas , Melatonina , Glândula Pineal , Agonistas alfa-Adrenérgicos/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Angiotensina II/metabolismo , Canais de Cálcio/metabolismo , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Norepinefrina , Glândula Pineal/metabolismo , Receptores Adrenérgicos beta/metabolismo , Glutamato de Sódio
4.
Neurochem Res ; 47(11): 3272-3284, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35945308

RESUMO

Phenylephrine (PE) is a canonical α1-adrenoceptor-selective agonist. However, unexpected effects of PE have been observed in preclinical and clinical studies, that cannot be easily explained by its actions on α1-adrenoceptors. The probability of the involvement of α2- and ß-adrenoceptors in the effect of PE has been raised. In addition, our earlier study observed that PE released noradrenaline (NA) in a [Ca2+]o-independent manner. To elucidate this issue, we have investigated the effects of PE on [3H]NA release and α1-mediated smooth muscle contractions in the mouse vas deferens (MVD) as ex vivo preparation. The release experiments were designed to assess the effects of PE at the presynaptic terminal, whereas smooth muscle isometric contractions in response to electrical field stimulation were used to measure PE effect postsynaptically. Our results show that PE at concentrations between 0.3 and 30 µM significantly enhanced the resting release of [3H]NA in a [Ca2+]o-independent manner. In addition, prazosin did not affect the release of NA evoked by PE. On the contrary, PE-evoked smooth muscle contractions were inhibited by prazosin administration indicating the α1-adrenoceptor-mediated effect. When the function of the NA transporter (NAT) was attenuated with nisoxetine, PE failed to release NA and the contractions were reduced by approximately 88%. The remaining part proved to be prazosin-sensitive. The present work supports the substantial indirect effect of PE which relays on the cytoplasmic release of NA, which might explain the reported side effects for PE.


Assuntos
Antagonistas Adrenérgicos alfa , Norepinefrina , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Citoplasma , Masculino , Camundongos , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Prazosina/farmacologia , Receptores Adrenérgicos alfa 1
5.
J Recept Signal Transduct Res ; 42(6): 580-587, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984443

RESUMO

The mechanism underlying the antiepileptic actions of norepinephrine (NE) is unclear with conflicting results. Our objectives are to conclusively delineate the specific adrenergic receptor (AR) involved in attenuating hippocampal CA3 epileptiform activity and assess compounds for lead drug development. We utilized the picrotoxin model of seizure generation in rat brain slices using electrophysiological recordings. Epinephrine (EPI) reduced epileptiform burst frequency in a concentration-dependent manner. To identify the specific receptor involved in this response, the equilibrium dissociation constants were determined for a panel of ligands and compared with established binding values for α1, α2, and other receptor subtypes. Correlation and slope of unity were found for the α2A-AR, but not other receptors. Effects of different chemical classes of α-AR agonists at inhibiting epileptiform activity by potency (pEC50) and relative efficacy (RE) were determined. Compared with NE (pEC50, 6.20; RE, 100%), dexmedetomidine, an imidazoline (pEC50, 8.59; RE, 67.1%), and guanabenz, a guanidine (pEC50, 7.94; RE, 37.9%), exhibited the highest potency (pEC50). In contrast, the catecholamines, EPI (pEC50, 6.95; RE, 120%) and α-methyl-NE (pEC50, 6.38; RE, 116%) were the most efficacious. These findings confirm that CA3 epileptiform activity is mediated solely by α2A-ARs without activation of other receptor systems. These findings suggest a pharmacotherapeutic target for treating epilepsy and highlight the need for selective and efficacious α2A-AR agonists that can cross the blood-brain barrier.


Assuntos
Agonistas alfa-Adrenérgicos , Região CA3 Hipocampal , Norepinefrina , Convulsões , Animais , Ratos , Agonistas alfa-Adrenérgicos/farmacologia , Epinefrina/farmacologia , Ligantes , Norepinefrina/farmacologia , Receptores Adrenérgicos , Região CA3 Hipocampal/fisiopatologia , Convulsões/tratamento farmacológico , Técnicas In Vitro
6.
Acta Clin Croat ; 61(Suppl 2): 57-66, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36824635

RESUMO

Modern approach in surgical treatment and in managing acute and chronic pain is nowadays more and more based on the implementation of all possible techniques of regional anesthesia (RA). Local anesthetics (LA) are needed to achieve standard regional anesthesia. Local anesthetics are primarily characterized by time constraints and duration of action, and depending on the amount applied, adverse effects on the cardiac and central nervous system may occur. Adjuvants are drugs used together with LA due to their synergistic effect, i.e. they improve start latency and duration of sensory and motor blockade and enable reduction of cumulative dose of LA and reduction of adverse effects on cardiac and nervous system. Nowadays, there is a huge variety of drugs that can be administered in combination with LA, and they, in general, can be divided into opioid and non-opioid adjuvants. The administration of opioids in RA over an extended time period was accompanied by some negative characteristics as respiratory depression, nausea, vomiting. So, their usage is still under a special control. Due to the positive effects shown by drugs from non-opioid adjuvants group (e.g. adrenaline, alpha adrenergic agonists, steroids, magnesium, midazolam, ketamine etc.), indications for their administration broadened. However, there are still some restrains in clinical practice based on the fact that neurotoxicity and demonstration of neurological complications in regional anesthesia haven't been properly researched yet.


Assuntos
Anestesia por Condução , Anestésicos Locais , Humanos , Anestesia por Condução/métodos , Agonistas alfa-Adrenérgicos/farmacologia , Analgésicos Opioides , Nervos Periféricos
7.
Mech Ageing Dev ; 201: 111617, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958827

RESUMO

BACKGROUND: Activated hepatic stellate cells (aHSCs) are the main effector cells during liver fibrogenesis. α-1 adrenergic antagonist doxazosin (DX) was shown to be anti-fibrotic in an in vivo model of liver fibrosis (LF), but the mechanism remains to be elucidated. Recent studies suggest that reversion of LF can be achieved by inducing cellular senescence characterized by irreversible cell-cycle arrest and acquisition of the senescence-associated secretory phenotype (SASP). AIM: To elucidate the mechanism of the anti-fibrotic effect of DX and determine whether it induces senescence. METHODS: Primary culture-activated rat HSCs were used. mRNA and protein expression were measured by qPCR and Western blot, respectively. Cell proliferation was assessed by BrdU incorporation and xCelligence analysis. TGF-ß was used for maximal HSC activation. Norepinephrine (NE), PMA and m-3M3FBS were used to activate alpha-1 adrenergic signaling. RESULTS: Expression of Col1α1 was significantly decreased by DX (10 µmol/L) at mRNA (-30 %) and protein level (-50 %) in TGF-ß treated aHSCs. DX significantly reduced aHSCs proliferation and increased expression of senescence and SASP markers. PMA and m-3M3FBS reversed the effect of DX on senescence markers. CONCLUSION: Doxazosin reverses the fibrogenic phenotype of aHSCs and induces the senescence phenotype.


Assuntos
Senescência Celular , Doxazossina/farmacologia , Células Estreladas do Fígado , Cirrose Hepática , Fenótipo Secretor Associado à Senescência/fisiologia , Transdução de Sinais/efeitos dos fármacos , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Norepinefrina/farmacologia , Ratos , Receptores Adrenérgicos alfa 1/metabolismo , Sulfonamidas/farmacologia
8.
J Mol Cell Cardiol ; 161: 86-97, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34375616

RESUMO

Delayed rectifier K+ current (IKs) is a key contributor to repolarization of action potentials. This study investigated the mechanisms underlying the adrenoceptor-induced potentiation of IKs in pulmonary vein cardiomyocytes (PVC). PVC were isolated from guinea pig pulmonary vein. The action potentials and IKs current were recorded using perforated and conventional whole-cell patch-clamp techniques. The expression of IKs was examined using immunocytochemistry and Western blotting. KCNQ1, a IKs pore-forming protein was detected as a signal band approximately 100 kDa in size, and its immunofluorescence signal was found to be mainly localized on the cell membrane. The IKs current in PVC was markedly enhanced by both ß1- and ß2-adrenoceptor stimulation with a negative voltage shift in the current activation, although the potentiation was more effectively induced by ß2-adrenoceptor stimulation than ß1-adrenoceptor stimulation. Both ß-adrenoceptor-mediated increases in IKs were attenuated by treatment with the adenylyl cyclase (AC) inhibitor or protein kinase A (PKA) inhibitor. Furthermore, the IKs current was increased by α1-adrenoceptor agonist but attenuated by the protein kinase C (PKC) inhibitor. PVC exhibited action potentials in normal Tyrode solution which was slightly reduced by HMR-1556 a selective IKs blocker. However, HMR-1556 markedly reduced the ß-adrenoceptor-potentiated firing rate. The stimulatory effects of ß- and α1-adrenoceptor on IKs in PVC are mediated via the PKA and PKC signal pathways. HMR-1556 effectively reduced the firing rate under ß-adrenoceptor activation, suggesting that the functional role of IKs might increase during sympathetic excitation under in vivo conditions.


Assuntos
Canais de Potássio de Retificação Tardia/metabolismo , Miócitos Cardíacos/metabolismo , Veias Pulmonares/metabolismo , Receptores Adrenérgicos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Cobaias , Átrios do Coração/metabolismo , Isoproterenol/farmacologia , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Proteína Quinase C/metabolismo , Veias Pulmonares/citologia , Transdução de Sinais
9.
Pharmacol Res Perspect ; 9(3): e00760, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33929079

RESUMO

Omecamtiv mecarbil (OM) is a novel medicine for systolic heart failure, targeting myosin to enhance cardiomyocyte performance. To assist translation to clinical practice we investigated OMs effect on explanted human failing hearts, specifically; contractile dynamics, interaction with the ß1 -adrenoceptor (AR) agonist (-)-noradrenaline and spontaneous contractions. Left and right ventricular trabeculae from 13 explanted failing hearts, and trabeculae from 58 right atrial appendages of non-failing hearts, were incubated with or without a single concentration of OM for 120 min. Time to peak force (TPF) and 50% relaxation (t50% ) were recorded. In other experiments, trabeculae were observed for spontaneous contractions and cumulative concentration-effect curves were established to (-)-noradrenaline at ß1 -ARs in the absence or presence of OM. OM prolonged TPF and t50% in ventricular trabeculae (600 nM, 2 µM, p < .001). OM had no significant inotropic effect but reduced time dependent deterioration in contractile strength compared to control (p < .001). OM did not affect the generation of spontaneous contractions. The potency of (-)-noradrenaline (pEC50 6.05 ± 0.10), for inotropic effect, was unchanged in the presence of OM 600 nM or 2 µM. Co-incubation with (-)-noradrenaline reduced TPF and t50% , reversing the negative diastolic effects of OM. OM, at both 600 nM and 2 µM, preserved contractile force in left ventricular trabeculae, but imparted negative diastolic effects in trabeculae from human failing heart. (-)-Noradrenaline reversed the negative diastolic effects, co-administration may limit the titration of inotropes by reducing the threshold for ischemic side effects.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Norepinefrina/farmacologia , Ureia/análogos & derivados , Função Ventricular/efeitos dos fármacos , Adulto , Idoso , Feminino , Insuficiência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Ureia/farmacologia
10.
Cytokine ; 142: 155497, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33770644

RESUMO

In brain astrocytes, noradrenaline (NA) has been shown to up-regulate IL-6 production via ß-adrenoceptors (ARs). However, the underlying intracellular mechanisms for this regulation are not clear, and it remains unknown whether α-ARs are involved. In this study, we investigated the AR-mediated regulation of IL-6 mRNA levels in the cultured astrocytes from rat spinal cord. NA, the α1-agonist phenylephrine, and the ß-agonist isoproterenol increased IL-6 mRNA levels. The phenylephrine-induced IL-6 increase was accompanied by an increase in ERK phosphorylation, and these effects were blocked by inhibitors of PKC and ERK. The isoproterenol-induced IL-6 increase was accompanied by an increase in CREB phosphorylation, and these effects were blocked by a PKA inhibitor. Our results indicate that IL-6 increases by α1- and ß-ARs are mediated via the PKC/ERK and cAMP/PKA/CREB pathways, respectively. Moreover, conditioned medium collected from astrocytes treated with the α2-AR agonist dexmedetomidine, increased IL-6 mRNA in other astrocytes. In this study, we elucidate that α1- and α2-ARs, in addition to ß-ARs, promote IL-6 transcription through different pathways in spinal cord astrocytes.


Assuntos
Astrócitos/metabolismo , Interleucina-6/genética , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Medula Espinal/citologia , Transcrição Gênica , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Interleucina-6/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
11.
J Pharmacol Sci ; 145(3): 228-240, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33602503

RESUMO

Astrocytes are glial cells with numerous fine processes which are important for the functions of the central nervous system. The activation of ß-adrenoceptors induces process formation of astrocytes via cyclic AMP (cAMP) signaling. However, the role of α-adrenoceptors in the astrocyte morphology has not been elucidated. Here, we examined it by using cultured astrocytes from neonatal rat spinal cords and cortices. Exposure of these cells to noradrenaline and the ß-adrenoceptor agonist isoproterenol increased intracellular cAMP levels and induced the formation of processes. Noradrenaline-induced process formation was enhanced with the α1-adrenoceptor antagonist prazosin and α2-adrenoceptor antagonist atipamezole. Atipamezole also enhanced noradrenaline-induced cAMP elevation. Isoproterenol-induced process formation was not inhibited by the α1-adrenoceptor agonist phenylephrine but was inhibited by the α2-adrenoceptor agonist dexmedetomidine. Dexmedetomidine also inhibited process formation induced by the adenylate cyclase activator forskolin and the membrane-permeable cAMP analog dibutyryl-cAMP. Moreover, dexmedetomidine inhibited cAMP-independent process formation induced by adenosine or the Rho-associated kinase inhibitor Y27632. In the presence of propranolol, noradrenaline inhibited Y27632-induced process formation, which was abolished by prazosin or atipamezole. These results demonstrate that α-adrenoceptors inhibit both cAMP-dependent and -independent astrocytic process formation.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Receptores Adrenérgicos alfa/fisiologia , Receptores Adrenérgicos beta/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Dexmedetomidina/farmacologia , Imidazóis/farmacologia , Isoproterenol/farmacologia , Norepinefrina/farmacologia , Prazosina/farmacologia , Ratos Wistar , Transdução de Sinais
12.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R105-R116, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33175586

RESUMO

Hypoxia tolerance in the vertebrate brain often involves chemical modulators that arrest neuronal activity to conserve energy. However, in intact networks, it can be difficult to determine whether hypoxia triggers modulators to stop activity in a protective manner or whether activity stops because rates of ATP synthesis are insufficient to support network function. Here, we assessed the extent to which neuromodulation or metabolic limitations arrest activity in the respiratory network of bullfrogs-a circuit that survives moderate periods of oxygen deprivation, presumably, by activating an inhibitory noradrenergic pathway. We confirmed that hypoxia and norepinephrine (NE) reduce network output, consistent with the view that hypoxia may cause the release of NE to inhibit activity. However, these responses differed qualitatively; hypoxia, but not NE, elicited a large motor burst and silenced the network. The stereotyped response to hypoxia persisted in the presence of both NE and an adrenergic receptor blocker that eliminates sensitivity to NE, indicating that noradrenergic signaling does not cause the arrest. Pharmacological inhibition of glycolysis and mitochondrial respiration recapitulated all features of hypoxia on network activity, implying that reduced ATP synthesis underlies the effects of hypoxia. Finally, activating modulatory mechanisms that dampen neuronal excitability when ATP levels fall, KATP channels and AMP-dependent protein kinase, did not resemble the hypoxic response. These results suggest that energy failure-rather than inhibitory modulation-silences the respiratory network during hypoxia and emphasize the need to account for metabolic limitations before concluding that modulators arrest activity as an adaptation for energy conservation in the nervous system.


Assuntos
Tronco Encefálico/fisiologia , Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Rana catesbeiana/fisiologia , Trifosfato de Adenosina/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Desoxiglucose/farmacologia , Feminino , Humanos , Ácido Iodoacético/farmacologia , Norepinefrina/farmacologia , Prazosina/farmacologia
13.
Invest Ophthalmol Vis Sci ; 61(14): 3, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259608

RESUMO

Purpose: The role of adrenergic innervation in the regulation of lacrimal gland (LG) ductal fluid secretion is unknown. The Aim of the present study was to investigate the effect of adrenergic stimulation on fluid secretion in isolated LG duct segments and to study the underlying intracellular mechanisms. Methods: Fluid secretion of isolated mouse LG ducts was measured using video-microscopy. Effect of various adrenergic agonists (norepinephrine, phenylephrine, and isoproterenol) on fluid secretion as well as inhibitory effects of specific antagonists on adrenergic agonist-stimulated secretory response were analyzed. Changes in intracellular Ca2+ level [Ca2+i] were investigated with microfluorometry. Results: Both norepinephrine and phenylephrine initiated a rapid and robust fluid secretory response, whereas isoproterenol did not cause any secretion. Phenylephrine-induced secretion was completely blocked by α1D-adrenergic receptor blocker BMY-7378. The endothelial nitric oxide synthase (eNOS) inhibitor L-NAME or guanylyl cyclase inhibitor ODQ reduced but not completely abolished the phenylephrine-induced fluid secretion, whereas co-administration of Ca2+-chelator BAPTA-AM resulted in a complete blockade. Phenylephrine stimulation induced a small, but statistically significant elevation in [\(Ca_i^{2 + }\)]. Conclusions: Our results prove the direct role of α1-adrenergic stimulation on LG ductal fluid secretion. Lack of isoproterenol-induced fluid secretory response suggests the absence of ß-receptor mediated pathway in mouse LG ducts. Complete blockade of phenylephrine-induced fluid secretion by BMY-7378 and predominant inhibition of the secretory response either by L-NAME or ODQ suggest that α-adrenergic agonists use the NO/cGMP pathway through α1D receptor. Ca2+ signaling independent from NO/cGMP pathway may also play an at least partial role in α-adrenergic induced ductal fluid secretion.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Aparelho Lacrimal/efeitos dos fármacos , Ducto Nasolacrimal/efeitos dos fármacos , Animais , Cálcio/metabolismo , Citofotometria , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Camundongos , NG-Nitroarginina Metil Éster/farmacologia , Ducto Nasolacrimal/metabolismo , Norepinefrina/farmacologia , Fenilefrina/farmacologia , Piperazinas/farmacologia , Lágrimas/efeitos dos fármacos
14.
Biomed Res Int ; 2020: 6632359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381567

RESUMO

INTRODUCTION: Bladder outlet obstruction (BOO) occurs in more than 20 percent of the adult population and may lead to changes in the structure and function of the bladder. The main objective of the study was to evaluate the expression of Toll-like receptor 4 (TLR 4) and Toll-like receptor 9 (TLR 9) in the animal model of BOO as potential triggers of the inflammation phase in the bladder. In addition, the modulating effect of alpha-1 adrenergic antagonist (tamsulosin) on TLR 4 and TLR 9 expression and inflammatory markers was assessed. Material and Methods. Thirty-two male, 9-week-old Sprague Dawley rats were randomly divided into 4 groups: SOP-sham-operated rats with a placebo (water); SOB-sham-operated rats with an alpha-1 adrenergic antagonist; BOOP-rats with BOO and a placebo; and BOOB-rats with BOO and an alpha-1 adrenergic antagonist. The rats were given a placebo or alpha-1 adrenergic antagonist for 15 days. Next, urine and the bladder were collected from the rats for histopathological and biochemical study. RESULTS: Histopathological analysis showed chronic inflammation without acute inflammation in the bladder. TLR 4 showed positive cytoplasmic reactivity in the urothelium and the smooth muscles of the bladder. TLR 9 showed positive cytoplasmic reactivity only in the urothelium. BOO caused an increase in TLR 4 and TLR 9 expression. Furthermore, treatment with an alpha-1 adrenergic antagonist had no significant effect on TLR 4 and TLR 9 expression in rats with BOO. BOO caused a significant increase in urine concentration of interleukin 6 (IL-6), while alpha-1 antagonist reduced the urine concentration of IL-6 and the concentration of interleukin 18 (IL-18). CONCLUSIONS: The results suggest the participation of TLR 4 and TLR 9 receptors in the induction of inflammation in the bladder, which is the first phase in the development of pathophysiological changes in BOO.


Assuntos
Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Peso Corporal , Modelos Animais de Doenças , Inflamação , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo , Tansulosina/farmacologia , Bexiga Urinária/metabolismo
15.
Nat Commun ; 11(1): 6157, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268792

RESUMO

Norepinephrine adjusts sensory processing in cortical networks and gates plasticity enabling adaptive behavior. The actions of norepinephrine are profoundly altered by recreational drugs like ethanol, but the consequences of these changes on distinct targets such as astrocytes, which exhibit norepinephrine-dependent Ca2+ elevations during vigilance, are not well understood. Using in vivo two-photon imaging, we show that locomotion-induced Ca2+ elevations in mouse astroglia are profoundly inhibited by ethanol, an effect that can be reversed by enhancing norepinephrine release. Vigilance-dependent astroglial activation is abolished by deletion of α1A-adrenergic receptor from astroglia, indicating that norepinephrine acts directly on these ubiquitous glial cells. Ethanol reduces vigilance-dependent Ca2+ transients in noradrenergic terminals, but has little effect on astroglial responsiveness to norepinephrine, suggesting that ethanol suppresses their activation by inhibiting norepinephrine release. Since abolition of astroglia Ca2+ activation does not affect motor coordination, global suppression of astroglial networks may contribute to the cognitive effects of alcohol intoxication.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Cálcio/metabolismo , Etanol/farmacologia , Norepinefrina/farmacologia , Vigília/efeitos dos fármacos , Intoxicação Alcoólica/genética , Intoxicação Alcoólica/metabolismo , Intoxicação Alcoólica/fisiopatologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Transportador 1 de Aminoácido Excitatório/deficiência , Transportador 1 de Aminoácido Excitatório/genética , Feminino , Regulação da Expressão Gênica , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Norepinefrina/antagonistas & inibidores , Receptores Adrenérgicos alfa 1/deficiência , Receptores Adrenérgicos alfa 1/genética , Vigília/fisiologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
ASN Neuro ; 12: 1759091420974134, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33176438

RESUMO

Norepinephrine (NE) control of hypothalamic gluco-regulation involves astrocyte-derived energy fuel supply. In male rats, exogenous NE regulates astrocyte glycogen metabolic enzyme expression in vivo through 5'-AMP-activated protein kinase (AMPK)-dependent mechanisms. Current research utilized a rat hypothalamic astrocyte primary culture model to investigate the premise that NE imposes sex-specific direct control of AMPK activity and glycogen mass and metabolism in these glia. In male rats, NE down-regulation of pAMPK correlates with decreased CaMMKB and increased PP1 expression, whereas noradrenergic augmentation of female astrocyte pAMPK may not involve these upstream regulators. NE concentration is a critical determinant of control of hypothalamic astrocyte glycogen enzyme expression, but efficacy varies between sexes. Data show sex variations in glycogen synthase expression and glycogen phosphorylase-brain and -muscle type dose-responsiveness to NE. Narrow dose-dependent NE augmentation of astrocyte glycogen content during energy homeostasis infers that NE maintains, over a broad exposure range, constancy of glycogen content despite possible changes in turnover. In male rats, beta1- and beta2-adrenergic receptor (AR) profiles displayed bi-directional responses to increasing NE doses; female astrocytes exhibited diminished beta1-AR content at low dose exposure, but enhanced beta2-AR expression at high NE dosages. Thus, graded variations in noradrenergic stimulation may modulate astrocyte receptivity to NE in vivo. Sex dimorphic NE regulation of hypothalamic astrocyte AMPK activation and glycogen metabolism may be mediated, in part, by one or more ARs characterized here by divergent sensitivity to this transmitter.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Glicogênio/metabolismo , Norepinefrina/farmacologia , Receptores Adrenérgicos/metabolismo , Caracteres Sexuais , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Expressão Gênica , Glicogênio/análise , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
Neuropharmacology ; 181: 108338, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002500

RESUMO

Upon retrieval, an aversive memory can undergo destabilization and reconsolidation. A traumatic-like memory, however, may be resistant to this process. The present study sought to contribute with a strategy to overcome this potential issue by investigating whether generalized fear retrieval is susceptible to destabilization-reconsolidation that can be pharmacologically modified. We hypothesized that exposure to a context that elicits moderate generalization levels would allow a malleable memory state. We developed a fear conditioning protocol in context A (cxt-A) paired with yohimbine administration to promote significant fear to a non-conditioned context B (cxt-B) in rats, mimicking the enhanced noradrenergic activity reported after traumatic events in humans. Next, we attempted to impair the reconsolidation phase by administering clonidine (CLO) immediately after exposure to cxt-A, cxt-B, or a third context C (cxt-C) neither conditioned nor generalized. CLO administered post-cxt-B exposure for two consecutive days subsequently resulted in decreased freezing levels in cxt-A. CLO after cxt-B only once, after cxt-A or cxt-C in two consecutive days, or independently of cxt-B exposures did not affect fear in a later test. A 6-h-delay in CLO treatment post-cxt-B exposures produced no effects, and nimodipine administered pre-cxt-B exposures precluded the CLO action. We then quantified the Egr1/Zif268 protein expression following cxt-B exposures and CLO treatments. We found that these factors interact to modulate this memory destabilization-reconsolidation mechanism in the basolateral amygdala but not the dorsal CA1 hippocampus. Altogether, memory destabilization can accompany generalized fear expression; thus, we may exploit it to potentiate reconsolidation blockers' action.


Assuntos
Medo/psicologia , Generalização Psicológica , Consolidação da Memória/fisiologia , Memória/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Clonidina/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/genética , Extinção Psicológica , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/psicologia , Rememoração Mental , Ratos , Ratos Wistar , Simpatolíticos , Ioimbina
18.
FASEB J ; 34(11): 14892-14904, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939891

RESUMO

Renal fibrosis is a common pathological hallmark of chronic kidney disease (CKD). Renal sympathetic nerve activity is elevated in patients and experimental animals with CKD and contributes to renal interstitial fibrosis in obstructive nephropathy. However, the mechanisms underlying sympathetic overactivation in renal fibrosis remain unknown. Norepinephrine (NE), the main sympathetic neurotransmitter, was found to promote TGF-ß1-induced epithelial-mesenchymal transition (EMT) and fibrotic gene expression in the human renal proximal epithelial cell line HK-2. Using both genetic and pharmacological approaches, we identified that NE binds Gαq-coupled α1-adrenoceptor (α1-AR) to enhance EMT of HK-2 cells by activating p38/Smad3 signaling. Inhibition of p38 diminished the NE-exaggerated EMT process and increased the fibrotic gene expression in TGF-ß1-treated HK-2 cells. Moreover, the pharmacological blockade of α1-AR reduced the kidney injury and renal fibrosis in a unilateral ureteral obstruction mouse model by suppressing EMT in the kidneys. Thus, sympathetic overactivation facilitates EMT of renal epithelial cells and fibrosis via the α1-AR/p38/Smad3 signaling pathway, and α1-AR inhibition may be a promising approach toward treating renal fibrosis.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Insuficiência Renal Crônica/metabolismo , Tansulosina/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Proteína Smad3/metabolismo , Tansulosina/uso terapêutico , Fator de Crescimento Transformador beta/farmacologia , Obstrução Uretral/complicações , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
FASEB J ; 34(11): 15448-15461, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32985027

RESUMO

The LPBN (lateral parabrachial nucleus) plays an important role in feeding control. CGRP (calcitonin gene-related peptide) LPBN neurons activation mediates the anorectic effects of different gut-derived peptides, including amylin. Amylin and its long acting analog sCT (salmon calcitonin) exert their anorectic actions primarily by directly activating neurons located in the area postrema (AP). A large proportion of projections from the AP and the adjacent nucleus of the solitary tractNTS to the LPBN, are noradrenergic (NA), and amylin-activated NAAP neurons are critical in mediating amylin's hypophagic effects. Here, we determine the functional role of NAAP amylin activated neurons to activate CGRP and non-CGRP LPBN neurons. To this end, NA was specifically depleted in the rat LPBN through a stereotaxic microinfusion of 6-OHDA, a neurotoxic agent that destroys NA terminals. While amylin (50 µg/kg) and sCT (5 µg/kg) reduced eating in sham-lesioned rats, no reduction in feeding occurred in NA-depleted animals. Further, the amylin-induced c-Fos response in the LPBN and c-Fos/CGRP colocalization were reduced in NA-depleted animals compared to controls. We conclude that AP â†’ LPBN NA signaling, through the activation of LPBN CGRP neurons, mediates part of amylin's hypophagic effect.


Assuntos
Anorexia/tratamento farmacológico , Calcitonina/metabolismo , Ingestão de Alimentos/fisiologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Neurônios/efeitos dos fármacos , Norepinefrina/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Agonistas dos Receptores da Amilina/farmacologia , Animais , Anorexia/metabolismo , Anorexia/patologia , Calcitonina/genética , Ingestão de Alimentos/efeitos dos fármacos , Masculino , Núcleos Parabraquiais/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Drug Des Devel Ther ; 14: 3559-3565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32921989

RESUMO

PURPOSE: To compare the efficacy of intranasal dexmedetomidine and dexmedetomidine-ketamine premedication in preschool children undergoing tonsillectomy. PATIENTS AND METHODS: We enrolled 66 children with American Society of Anesthesiologists physical status I or II, aged 3-7 years undergoing tonsillectomy. Patients were randomly allocated to receive intranasal premedication with either dexmedetomidine 2 µg kg-1 (Group D) or dexmedetomidine 2 µg kg-1 and ketamine 2 mg kg-1 (Group DK). The primary outcome was the sedation level assessed by the Modified Observer's Assessment of Alertness/Sedation Scale (MOAA/S) 30 min after intervention. The minimal clinically relevant difference in the MOAA/S score was 0.5. Secondary outcomes included sedation onset time, parental separation anxiety, acceptance of mask induction, emergence time, emergence delirium, postoperative pain intensity, length of stay in the post-anesthesia care unit (PACU), and adverse effects. RESULTS: At 30 min after premedication, the MOAA/S score was lower in Group DK than in Group D patients (median: 1.0, interquartile range [IQR]: 1.0-2.0 vs median: 3.0, IQR: 2.0-3.0; P<0.001), with a median difference of 1.0 (95% confidence interval [CI]: 1.0-2.0, P<0.001). Patients in Group DK showed considerably faster onset of sedation (15 min, 95% CI: 14.2-15.8 min) than Group D (24 min, 95% CI: 23.2-24.8 min), with a median difference of 8.0 min (95% CI: 7.0-9.0 min, P<0.001). Both parental separation and facemask acceptance scores were lower in Group DK than in Group D patients (P=0.012 and P=0.001, respectively). There was no significant difference in emergence time, incidence of emergence delirium, postoperative pain scores, and length of stay in the PACU between the two groups. CONCLUSION: Intranasal premedication with a combination of dexmedetomidine and ketamine produced better sedation for pediatric tonsillectomy than dexmedetomidine alone.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Dexmedetomidina/farmacologia , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Dor Pós-Operatória/tratamento farmacológico , Administração Intranasal , Agonistas alfa-Adrenérgicos/administração & dosagem , Criança , Pré-Escolar , Dexmedetomidina/administração & dosagem , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Humanos , Hipnóticos e Sedativos/administração & dosagem , Ketamina/administração & dosagem , Masculino , Dor Pós-Operatória/cirurgia , Medicação Pré-Anestésica , Tonsilectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...